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Soil O2 in Palo Colorado Forest, Puerto Rico

From: Silver et al. 1999
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The “Biologically Relevant” Redox Ladder
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Questions:

1.)  What is the characteristic time-scale of 
O2 fluctuation and redox shifts?

2.)  Can H2 concentrations be used as a 
biologically relevant proxy for pE 
measurements?
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Research Questions:

1.)  What is the effect of fluctuating O1.)  What is the effect of fluctuating O22  
availability on soil N cycling?availability on soil N cycling?

2.)  How does fluctuating 2.)  How does fluctuating redoxredox affect  affect 
microbial community structure?microbial community structure?



• Treatments:

    1.) constant O2

    2.) alternating O2/N2  -12 hours

    3.) alternating O2/N2  -4 days

    4.) constant N2

• Harvest points: initial, 3 wk, 6 wk

• Aerobic 15N tracer experiment
(15NO3 & 15NH4) for each harvest

Redox Fluctuation Experiment:
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Results Summary -N cycling

• Gross mineralization is relatively insensitive to O2

availability.

• Gross nitrification is very sensitive to low redox 
conditions, yet occurs when O2 becomes 
available.

•DNRA is a significant fate for NO3 and is promoted
by low and fluctuating redox conditions.  It is
unaffected by brief O2 exposure.
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2 fragment lengths =
2 different ‘species’

5 fragment lengths =
several different ‘species’

1 fragment  =
1 abundant ‘species’

T-RFLP Data
Fluorescent tag

Restriction site
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T-RFLP Principal Components Analysis
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Results Summary -Bacterial Communities

•Microbial biomass is maintained by redox fluctuations and
diminished by static oxic or anoxic regimes.

•Field communities are best approximated by lab-incubated
communities from a 4-day fluctuation regime.

•Microbes adapted to both oxic and anoxic conditions appear to
be rare in these soils.

•Denitrification is particularly sensitive to microbial community
composition.



Ice core and measurement record of global N2O Trend

From IPCC 2001 (3rd Assessment Report) Change in N2O abundance for the last
1,000 years as determined from ice cores and whole air samples.



The Top-Down Approach



The Bottom-Up Approach
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Conclusions

• N Conservative
Redox fluctuation in tropical soils may encourage
N retention through the co-occurrence of
nitrification and rapid DNRA.

• Flexible Communities
Microbes that process N in variable redox soils
may be more tolerant of redox shifts than
commonly thought possible.
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